Landscape Conservation Cooperative

Great Northern

Landscape Drivers:Climate Change and others

Change in Average Annual Precipitation by 2100

Model: Ensemble Average, SRES emission scenario: A2

Geographic Framework

LCC Primary Functions

- Collaboratively identify and prioritize information needs to address threats to fish, wildlife landscape scale
- Serve as network for shared science capacity to support natural resource managers
- Provide science information and tools to be used in planning and conservation delivery
- Support adaptive management and monitoring strategies
- Interface specialized scientific expertise

Assessment Results

- Land Cover Data (e.g., Landfire, NLCD)
- Decision Support Tools to apply downscaled climate data
- Fine-scale linkage analysis for population connectivity
- National Wetlands Inventory
- Water resource vulnerability assessments
- Biological monitoring protocols
- Data mgmt/interfacing capabilities and tools

Data Management and Repository

Purpose GNLCC Data management and availability

- SSP funded in 2009
- Geographic scope
- Data platform structure
- Key foundational data and sources
- QA/QC
- Long-term hosting capability
- Interfacing, applications and DSS

Potential LCC Outcomes

- Coordinated, down-scaled climate & ecological info
- Potential range shifts of priority species
- Vulnerability assessments for species and habitats
- Corridor analyses assessing present and future habitat
- Convergence of climate and non-climate stressors
- Inventory and monitoring strategies
- Data sharing and interfacing
- Leveraging of resources

Ecologically relevant climate info

- Physiographic-hydrographic relationships
 - Elevation
 - Vegetation
 - Micro-climate
- Seasonal patterns
 - Snow-water equivalent
 - Growing season
 - Phenology
 - Fire/drought/flood

Pika Climate/Habitat Analysis

Scale

- Climate data v. habitat/species info
 - Pika occupy talus @ m scale
 - Climate data relevant @ km scale
- Temporal and spatial relevance to ecological
 - functions
 - Habitat micro-climate
 - Habitat patch dynamics
 - Physiological response

Pika Climate/Habitat Analysis

Technology

- Remote imagery reliable for terrestrial micro-habitat
- E.g. talus, 3-D micro-climate

*Need tools that are:

- iterative
- cross-disciplinary
- interfacing

